Оценка качества видео потоков в беспроводных сетях

Докладчик: Андрей Сухов (amskh@yandex.ru)

Coaвтор: Евгений Сагатов (sagatov@ya.ru)

Самарский Государственный Аэрокосмический Университет

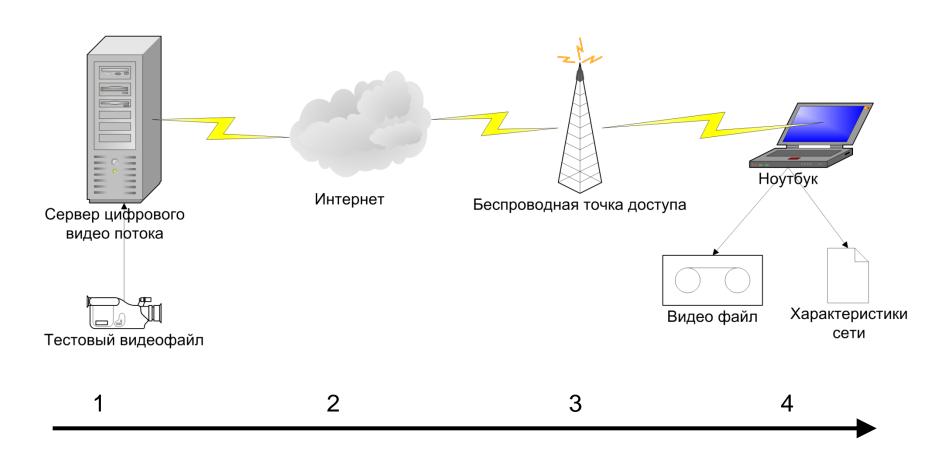
М

Актуальность работы

■ Согласно данным, полученным Cisco, в 2008 году доля видео составляет 22 процента всего интернеттрафика. В 2006 году этот показатель был равен 12 процентам. По прогнозам в настоящий момент доля видео в интернет-трафике должна достичь 32 процентов. Нужно отметить, что эти данные не учитывают трафик Р2Р-сетей, в которых, по оценкам Cisco, ежемесячно передается 600 миллионов гигабайт видео, что соответствует более чем 120 миллионам DVD-дисков.

Задача работы

■ Путем модернизации кодеков и структуры видео потоков добиться, чтобы большие потери пакетов и ограничения беспроводных сетей не приводили к ухудшению качества передачи потокового видео реального времени.


Параметры качества сети

- пропускная способность
- задержка при передаче пакета
- пакетный джиттер
- количество потерянных пакетов
- количество пакетов с ошибками

Образец для копирования – лидер среди видео решений – система интернет телевидения «Видикор»

- пропускная способность сети от 32 кб/с
- допустимая задержка при передаче пакета до 2000 мс
- допустимый джиттер пакетов до 500 мс
- потери пакетов, не влияющие на качество видеосигнала до 10%

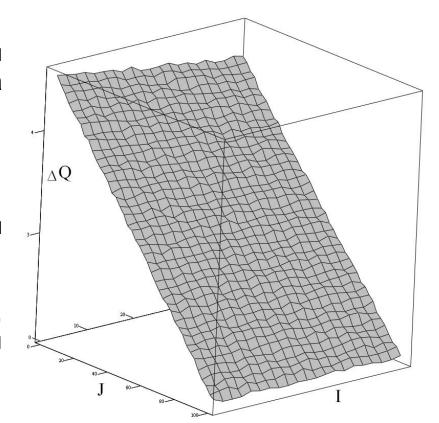
Проводимые эксперименты

м

Методы оценки качества видео

- Метод субъективной оценки (MOS Mean Opinion Score) SAMVIQ (Subjective Assessment Method for Video Quality evaluation). В качестве эксперта выступает группа людей.
- Метод объективной оценки MSE (Mean Square Error), основанный на вычислении среднеквадратичного отклонения между исходным и полученным после передачи изображениями. Данная оценка проводится с помощью специального программного обеспечения.

Ухудшение качества видео


$$\Delta Q = \alpha J + \beta I - \gamma JI$$

 $J = IPDV + \zeta p$ — это переменная, которая определяет степень ухудшения качества сети, где

IPDV – вариация задержки пакета; **р** – процент потерянных пакетов.

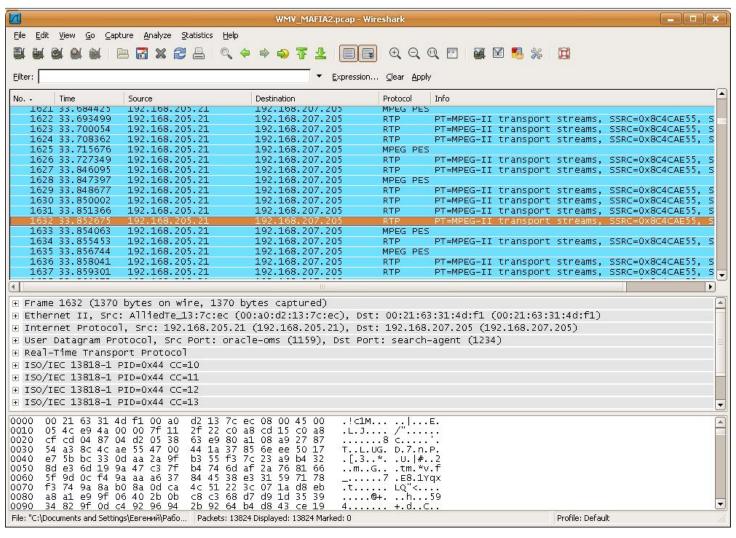
I – межпакетный джиттер, вызванный кодеками на стороне отправителя.

 α , β , γ , ζ — числовые коэффициенты, которые должны быть найдены экспериментально.

Первые эксперименты

Сервер трансляции видео:

- VideoLan VLC media player 0.9.6
- Подключен к сети ТФ СГАУ по Ethernet 100Мбит/с



Ноутбук:

- VideoLan VLC media player 0.9.6
- WireShark 0.99.8
- Подключен к сети ТФ СГАУ по Wi-Fi

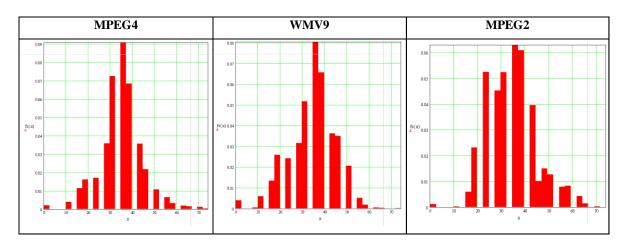
Анализ результатов

Зависимость качества видео от потерь пакетов и сетевого джиттера

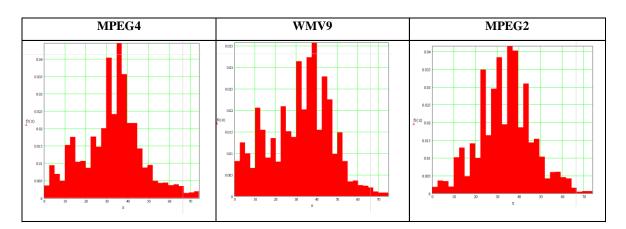
Результат анализа видео для MPEG4

Потери пакетов	Джиттер (ms)	MOS (%)	MOS (0-5 баллов)
0%	17	85	4,25
1,80%	17	55	2,75
7,10%	17	60	3
31,60%	17	10	0,5

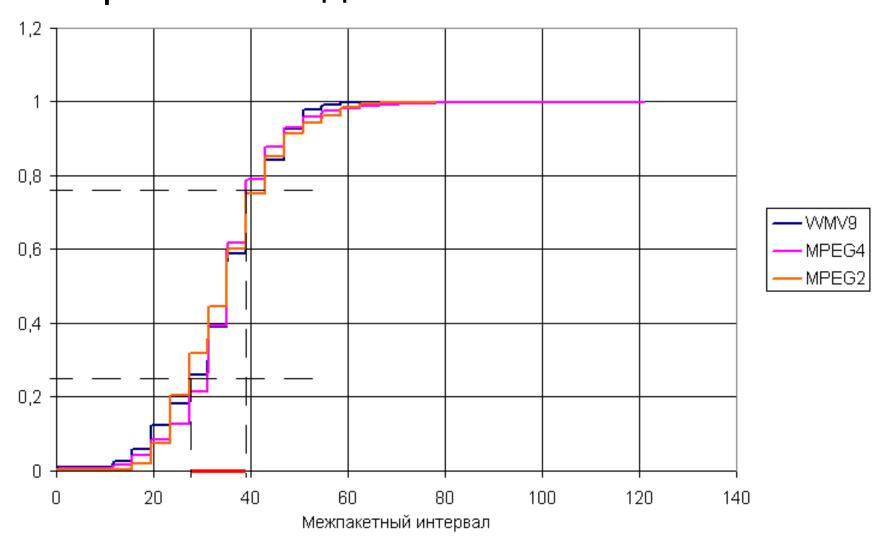
Результат анализа видео для MPEG2

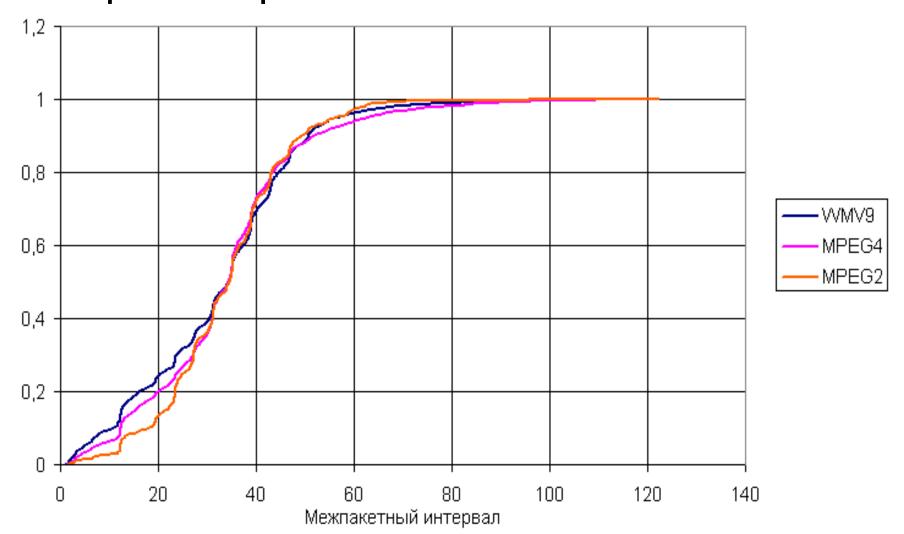

Потери пакетов	Джиттер (ms)	MOS (%)	MOS(0-5 баллов)
0%	17	72	3,6
3,80%	17	40	2
5,90%	17	30	1,5
9,50%	17	40	2
80,00%	17	10	0,5

Результат анализа видео для WMV9


Потери пакетов	Джиттер (ms)	MOS (%)	MOS(0-5 баллов)
0%	17	77	3,85
6,30%	17	60	3
14,40%	17	20	1
15,00%	17	40	2
83,90%	17	5	0,25

Плотность распределения межпакетного интервала


Исходящего потока


Принимаемого потока

Функция распределения межпакетного интервала исходного потока

Функция распределения межпакетного интервала принимаемого потока

Спасибо за внимание!